Bibliographies Grouped by Tag:
Combine bibliography tags from the above list:

Anifandis et al., 2017

Anifandis, G., Amiridis, G., Dafopoulos, K., Daponte, A., Dovolou, E., Gavriil, E., Gorgogietas, V., Kachpani, E., Mamuris, Z., Messini, C. I., Vassiou, K., & Psarra, A. G., “The In Vitro Impact of the Herbicide Roundup on Human Sperm Motility and Sperm Mitochondria,” Toxics, 2017, 6:1, DOI:10.3390/toxics6010002.

ABSTRACT:

Toxicants, such as herbicides, have been hypothesized to affect sperm parameters. The most common method of exposure to herbicides is through spraying or diet. The aim of the present study was to investigate the effect of direct exposure of sperm to 1 mg/L of the herbicide Roundup on sperm motility and mitochondrial integrity. Sperm samples from 66 healthy men who were seeking semen analysis were investigated after written informed consent was taken. Semen analysis was performed according to the World Health Organization guidelines (WHO, 2010). Mitochondrial integrity was assessed through mitochondrial staining using a mitochondria-specific dye, which is exclusively incorporated into functionally active mitochondria. A quantity of 1 mg/L of Roundup was found to exert a deleterious effect on sperm’s progressive motility, after 1 h of incubation (mean difference between treated and control samples = 11.2%) in comparison with the effect after three hours of incubation (mean difference = 6.33%, p < 0.05), while the relative incorporation of the mitochondrial dye in mitochondria of the mid-piece region of Roundup-treated spermatozoa was significantly reduced compared to relative controls at the first hour of incubation, indicating mitochondrial dysfunction by Roundup. Our results indicate that the direct exposure of semen samples to the active constituent of the herbicide Roundup at the relatively low concentration of 1 mg/L has adverse effects on sperm motility, and this may be related to the observed reduction in mitochondrial staining. FULL TEXT


Anway et al., 2005

Anway, Matthew D., Cupp, Andrea S., Uzumcu, Mehmet, and Skinner, Michael K., “Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility,”  Science, 2005, 308:5727,  DOI: 10.1126/SCIENCE.1108190.

ABSTRACT:

Transgenerational effects of environmental toxins require either a chromosomal or epigenetic alteration in the germ line. Transient exposure of a gestating female rat during the period of gonadal sex determination to the endocrine disruptors vinclozolin (an antiandrogenic compound) or methoxychlor (an estrogenic compound) induced an adult phenotype in the F1 generation of decreased spermatogenic capacity (cell number and viability) and increased incidence of male infertility. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined (that is, F1 to F4). The effects on reproduction correlate with altered DNA methylation patterns in the germ line. The ability of an environmental factor (for example, endocrine disruptor) to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.  FULL TEXT


Arbuckle et al., 1999

Arbuckle TE, Savitz DA, Mery LS, Curtis KM, “Exposure to phenoxy herbicides and the risk of spontaneous abortion,” Epidemiology, 1999, 10:6.

ABSTRACT:

The Ontario Farm Family Health Study was designed to assess retrospectively the potential adverse effects of exposure to pesticides on pregnancy. Information on the health and life style of approximately 2,000 farm couples, as well as a history of use of pesticides on the farm, was collected by questionnaire. This analysis focuses on pre- and postconception exposure to phenoxy herbicides and the risk of spontaneous abortion using the complete (to date) pregnancy history for each woman. Preconception exposure (from 3 months before conception to the month of conception) was weakly associated with the risk of spontaneous abortion at <20 weeks’ gestation [adjusted odds ratio (OR) = 1.1; 95% confidence interval (CI) = 0.6-1.9]. When the analyses were restricted to spontaneous abortions of <12 weeks, the risk was more than doubled (adjusted OR = 2.5; 95% CI = 1.0-6.4), but the results were sensitive to the cutpoint used. If the husband did not normally wear protective equipment during application, the crude OR for early spontaneous abortions was 5.0 (95% CI = 0.7-36.2). Exposure to phenoxy herbicides during the first trimester was generally not associated with increased risk of spontaneous abortion. The results suggest a possible role of preconception (possibly paternal) exposures to phenoxy herbicides in the risk of early spontaneous abortions.


Arbuckle et al., 2001

Arbuckle TE, Lin Z, Mery LS., “An exploratory analysis of the effect of pesticide exposure on the risk of spontaneous abortion in an Ontario farm population,” Environmental Health Perspectives, 2001, 109: 8.

ABSTRACT:

The toxicity of pesticides on human reproduction is largely unknown–particularly how mixtures of pesticide products might affect fetal toxicity. The Ontario Farm Family Health Study collected data by questionnaire on the identity and timing of pesticide use on the farm, lifestyle factors, and a complete reproductive history from the farm operator and eligible couples living on the farm. A total of 2,110 women provided information on 3,936 pregnancies, including 395 spontaneous abortions. To explore critical windows of exposure and target sites for toxicity, we examined exposures separately for preconception (3 months before and up to month of conception) and postconception (first trimester) windows and for early (< 12 weeks) and late (12-19 weeks) spontaneous abortions. We observed moderate increases in risk of early abortions for preconception exposures to phenoxy acetic acid herbicides [odds ratio (OR) = 1.5; 95% confidence interval (CI), 1.1-2.1], triazines (OR = 1.4; 95% CI, 1.0-2.0), and any herbicide (OR = 1.4; 95% CI, 1.1-1.9). For late abortions, preconception exposure to glyphosate (OR = 1.7; 95% CI, 1.0-2.9), thiocarbamates (OR = 1.8; 95% CI, 1.1-3.0), and the miscellaneous class of pesticides (OR = 1.5; 95% CI, 1.0-2.4) was associated with elevated risks. Postconception exposures were generally associated with late spontaneous abortions. Older maternal age (> 34 years of age) was the strongest risk factor for spontaneous abortions, and we observed several interactions between pesticides in the older age group using Classification and Regression Tree analysis. This study shows that timing of exposure and restricting analyses to more homogeneous endpoints are important in characterizing the reproductive toxicity of pesticides.  FULL TEXT


Aris and Leblanc, 2011

Aris, Aziz, & Leblanc, Samuel; “Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada.;” Reproductive Toxicology, 2011, 31, 528-533; DOI: 10.1016/j.reprotox.2011.02.004.

ABSTRACT:

Pesticides associated to genetically modified foods (PAGMF), are engineered to tolerate herbicides such as glyphosate (GLYP) and gluphosinate (GLUF) or insecticides such as the bacterial toxin bacillus thuringiensis (Bt). The aim of this study was to evaluate the correlation between maternal and fetal exposure, and to determine exposure levels of GLYP and its metabolite aminomethyl phosphoric acid (AMPA), GLUF and its metabolite 3-methylphosphinicopropionic acid (3-MPPA) and Cry1Ab protein (a Bt toxin) in Eastern Townships of Quebec, Canada. Blood of thirty pregnant women (PW) and thirty-nine nonpregnant women (NPW) were studied. Serum GLYP and GLUF were detected in NPW and not detected in PW. Serum 3-MPPA and CryAb1 toxin were detected in PW, their fetuses and NPW. This is the first study to reveal the presence of circulating PAGMF in women with and without pregnancy, paving the way for a new field in reproductive toxicology including nutrition and utero-placental toxicities. FULL TEXT


Aristilde et. al, 2017

Ludmilla Aristilde, Michael L. Reed, Rebecca A. Wilkes, Tracy Youngster, Matthew A. Kukurugya, Valerie Katz, and Clayton R. S. Sasaki, “Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species,” Frontiers in Environmental Science, 2017, 5:34, DOI: 10.3389/fenvs.2017.00034.

ABSTRACT:

Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM), the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs), the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a
lethal dose of glyphosate completely recovered in terms of both growth rate and selected metabolite levels. Collectively, our findings led us to conclude that the  glyphosateinduced specific disruption of de novo biosynthesis of aromatic AAs accompanied by widespread metabolic disruptions was responsible for dose-dependent adverse effects of glyphosate on sensitive soil Pseudomonas species.  FULL TEXT


Armiliato et al., 2014

Armiliato N, Ammar D, Nezzi L, Straliotto M, Muller YM, Nazari EM, “Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate,” Journal of Toxicology and Environmental Health A, 2014, 77:7, DOI: 10.1080/15287394.2014.880393.

ABSTRACT

Glyphosate is a broad-spectrum organophosphate (OP) herbicide, highly soluble in water, and when applied in terrestrial systems it penetrates into soil, eventually reaching the aquatic community and affecting nontarget organisms. The aim of this study was to evaluate the toxicity of glyphosate on ovaries of zebrafish (Danio rerio). Ovaries (n = 18 per triplicate) were exposed to 65 μg/L of glyphosate [N-(phosphonomethyl) glycine] for 15 d. This concentration was determined according to Resolution 357/2005/CONAMA/Brazil, which establishes the permissible concentration of glyphosate in Brazilian inland waters. Nonexposed ovaries (n = 18 per triplicate) were used as control. Subsequently, morphology and expression of steroidogenic factor-1 (SF-1) of exposed and nonexposed ovaries was determined. No apparent changes were noted in general morphology of exposed and nonexposed ovaries. However, a significant increase in diameter of oocytes was observed after exposure to glyphosate. When ovarian ultrastructure was examined the presence of concentric membranes, appearing as myelin-like structures, associated with the external membranes of mitochondria and with yolk granules was found. After glyphosate exposure, immunohistochemistry and immunoblotting revealed greater expression of SF-1 in the oocytes, which suggests a relationship between oocyte growth and SF-1 expression. These subtle adverse effects of glyphosate on oocytes raised a potential concern for fish reproduction. These results contribute to understanding glyphosate-induced toxicity to nontarget organisms, showing subcellular and molecular impairments that may affect reproduction in +female fish.


Associated Press, 2017a

Associated Press, “Arkansas governor approves board’s limits on dicamba use,” The Washington Times, January 4, 2017.

SUMMARY:

Reports that Gov. Hutchinson has approved the Arkansas State Plant Board’s proposal to limit when and where dicamba can be sprayed in the upcoming planting season.  It includes a requirement for a 1 mile buffer zone before spraying dicamba, except on pasture or rangeland. FULL TEXT


Associated Press, 2017b

Associated Press, “Farm chemical linked to oak damage,” July 2, 2017, Quad-City Times,

SUMMARY:

Reports that almost 1,000 residents of Iowa have contacted the state Department of Natural Resources about damaged leaves on oak trees (photo, right) that looked like insect damage.  Research from the University of Illinois in 2004 showed that herbicide drift was likely linked to the condition, known as leaf tatters, due to exposure to chloroacetanilide herbicides like dicamba.  Exposure occurs from direct drift but also through atmospheric volubility in areas not close to where the herbicide was applied. White oaks are particularly susceptible, and trees can die if damage to the leaves occurs over multiple years.   FULL TEXT


ATSDR, 2019

Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Glyphosate: Draft for Public Comment,” United States Department of Health and Human Services, 2019.

SUMMARY:

This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary.

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance’s toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. The adequacy of information to determine a substance’s health effects is described in a health effects summary. Data needs that are of significance to the protection of public health are identified by ATSDR and EPA.

Each profile includes the following:

(A) The examination, summary, and interpretation of available toxicologic information and epidemiologic evaluations on a toxic substance to ascertain the levels of significant human exposure for the substance and the associated acute, intermediate, and chronic health effects;
(B) A determination of whether adequate information on the health effects of each substance is available or in the process of development to determine the levels of exposure that present a significant risk to human health due to acute, intermediate, and chronic duration exposures; and
(C) Where appropriate, identification of toxicologic testing needed to identify the types or levels of exposure that may present significant risk of adverse health effects in humans.

FULL TEXT