Bibliographies Grouped by Tag:
Combine bibliography tags from the above list:

Parvez et al., 2018

S. Parvez, R. R. Gerona, C. Proctor, M. Friesen, J. L. Ashby, J. L. Reiter, Z. Lui, and P. D. Winchester, “Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study,” Environmental Health, 17:23, March 9, 2018, DOI: 10.1186/s12940-018-0367-0.

ABSTRACT:

BACKGROUND: Glyphosate (GLY) is the most heavily used herbicide worldwide but the extent of exposure in human pregnancy remains unknown. Its residues are found in the environment, major crops, and food items that humans, including pregnant women, consume daily. Since GLY exposure in pregnancy may also increase fetal exposure risk, we designed a birth-cohort study to determine exposure frequency, potential exposure pathways, and associations with fetal growth indicators and pregnancy length.

METHOD: Urine and residential drinking water samples were obtained from 71 women with singleton pregnancies living in Central Indiana while they received routine prenatal care. GLY measurements were performed using liquid chromatography-tandem mass spectrometry. Demographic and survey information relating to food and water consumption, stress, and residence were obtained by questionnaire. Maternal risk factors and neonatal outcomes were abstracted from medical records. Correlation analyses were used to assess relationships of urine GLY levels with fetal growth indicators and gestational length.

RESULTS: The mean age of participants was 29 years, and the majority were Caucasian. Ninety three percent of the pregnant women had GLY levels above the limit of detection (0.1 ng/mL). Mean urinary GLY was 3.40 ng/mL (range 0.5–7.20 ng/mL). Higher GLY levels were found in women who lived in rural areas (p = 0.02), and in those who consumed > 24 oz. of caffeinated beverages per day (p = 0.004). None of the drinking water samples had detectable GLY levels. We observed no correlations with fetal growth indicators such as birth weight percentile and head circumference. However, higher GLY urine levels were significantly correlated with shortened gestational lengths (r = − 0.28, p = 0.02).

CONCLUSIONS: This is the first study of GLY exposure in US pregnant women using urine specimens as a direct measure of exposure. We found that > 90% of pregnant women had detectable GLY levels and that these levels correlated significantly with shortened pregnancy lengths. Although our study cohort was small and regional and had limited racial/ethnic diversity, it provides direct evidence of maternal GLY exposure and a significant correlation with shortened pregnancy. Further  investigations in a more geographically and racially diverse cohort would be necessary before these findings could be generalized. FULL TEXT


Winchester et al., 2019

Winchester, Paul, Reiter, Jill L., Proctor, Cathy, Gerona, Roy R., Avery, Kayleigh D., Bromm, Jennifer R., Elsahy, Deena A, Hadley, Emily A., McGraw, Sara N., & Jones, Dana D., “Glyphosate in 1st Trimester of Pregnancy: Herbicides in the Womb,” 2019, Presented at the Pediatric Academic Societies (PAS) Meeting 2019, 4/24-5/1/2019, Baltimore, MD.

ABSTRACT:

BACKGROUND: Our previous study demonstrated that >90% of pregnant Midwest women had detectable glyphosate (GLY) in their urine. Most glyphosate exposure occurs through food & certain beverages but not through drinking water. Shorter pregnancies, rural address and caffeinated beverages were associated with higher GLY levels. The cohort was small and predominantly Caucasian. The current study was needed to confirm high rates of GLY detection in a racially more diverse high risk population.
OBJECTIVE: Will GLY be detected in a majority of pregnancies regardless of race/ethnicity? Are GLY levels associated with adverse pregnancy outcomes? Do GLY levels vary by season of collection in pregnancy?
DESIGN/METHODS: Prospective observation study. Discarded urine from 1st trimester pregnancies were collected prospectively from a high risk University obstetrical clinic. All pregnancy outcomes and neonatal outcomes were abstracted. Urines were frozen, shipped to analytical lab (USCF, RG) for analysis. Urine GLY (Glyphosate (N(phosphomethyl) glycine) was analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), limit of quantification of 0.1 ng/mL. GLY measured as independent variable was compared to multiple variables using bivariate analysis.
RESULTS: GLY was detected in 99% (186 of 187) pregnancies. Levels varied from 1.004 to 10.31ng/mL with geometric mean 3.264ng/mL. Mean maternal age was 30, with 69% white, 4.2% Hispanic, 12% Black, 3.7% Asian and one “other”. GLY levels did not differ significantly by racial/ethnic group. GLY levels were not significantly difference between preterm and term outcomes, multiple/singleton or between fetal loss and live births. GLY levels were higher with increasing gestation at enrollment with 4-8 weeks GLY 2.73 vs 9-13 weeks 3.51(p=.0098). Significantly higher GLY levels were found in April-July pregnancies vs other months(3.64 vs 3.07 p=.03). NICU admission rates were 85% for preterm and 35% for term. Birth defect rate was12% and 37% had intrauterine drug exposure or NAS. Preterm birth rate was 31%. CONCLUSIONS: Glyphosate was found in virtually all of these high risk pregnancies in the first trimester regardless of race/ethnicity, plurality, fetal loss or gestation at birth. GLY levels rose with increasing gestation in the first trimester suggesting that gestation at measurement impacts GLY levels. Dietary sources contribute to GLY but we did find April-July are associated with higher GLY levels than other months. The fetal epigenetic consequences of 1st trimester GLY exposure remains unknown. FULL TEXT